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The Avriel-Ben-Tal algebraic operations
approach for a short version proof of the

Karush-Kuhn-Tucker optimality conditions

Veronica CORNACIU and Ileana IOANA

Abstract

In this paper, by using (h, ϕ)-generalized directional derivative and
(h, ϕ)-generalized gradient, the authors directly derives the Karush-
Kuhn-Tucker conditions by applying a corollary of Farkas lemma under
the Mangasarian-Fromovitz constraint qualification.Furthermore, the bound-
edness of Lagrange multipliers is showed.

1 Introduction

In mathematical programming involving differentiable functions, the
Karush-Kuhn-Tucker conditions provide necessary conditions for an optimum,
under certain qualifications on the constraints.

Many authors studied optimality conditions for vector optimization prob-
lems involving constraints that are defined by single-valued mappings and
obtained optimality conditions in terms of Lagrange-Kuhn-Tucker multipliers.

The Karush-Kuhn-Tucker conditions have been also used to derive many
significant results, for example, in economics, in decision problems that occur
in static situations, to show the existence of an equilibrium for a competitive
economy, to carry out the first-order approach to principal-agent problems,
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and to examine the need for land reform [5],[9],[15]. The Karush-Kuhn-Tucker
conditions and/or the method of Lagrange multipliers appear also in standard
microeconomics textbooks. Mas-Colell, Whinston and Green [8], gives some
Karush-Kuhn-Tucker optimality conditions for an optimization problem with
both inequality and equality constraints. One of the most used method to
determine the Karush-Kuhn-Tucker conditions for the optimization problem
with inequality and equality constraints incorporates the method of Lagrange
multipliers (introduced by Lagrange in 1788); therefore, the simple derivation
of the Karush-Kuhn-Tucker conditions would shed light on the problems true
nature.

The problem of optimization is intensely debatet by Preda [11]-[14], in his
works, generalizing different types of covexities to obtain necessary conditions
for optimization problems.

The study of the optimality conditions also appear in [18], where are intro-
duced five kinds of cones, which are used to establish the constraints qualifica-
tions, under which the generalized Karush-Kuhn-Tucker necessary conditions
are developed for a class of generalized differentiable single-objective and mul-
tiojective programming problems also.

The Karush-Kuhn-Tucker conditions under the Mangasarian-Fromovitz con-
straint qualification are also obtained in [16].

The main aim of this paper is to follow the line of [16] to give some opti-
mality necessary conditions for optimization problems but in the the frame of
the pseudo-Avriel-Ben-Tal algebraic operations.

The paper is organized as follows. Section 2 contains preliminaries and
related results that will be used to obtain the main result of the paper.

In Section 3, the Karush-Kuhn-Tucker optimality conditions under the
Mangasarian-Fromovitz constraint qualification are derived directly by apply-
ing a corollary of Farkas lemma without resorting to the Fritz John conditions.
Also the boundedness of Lagrange multipliers is shown.

Throughout the paper, we denote by R the set of real numbers and
denote by Rn the collection of n-dimensional real vectors.
Ben-Tal [3] introduced certain generalized operations of addition and multi-
plication.

1. Let h be an n vector-valued continuous function defined on Rn, with the
inverse function h−1. Define the h-vector addition of x ∈ Rn and y ∈ Rn
as

x⊕ y = h−1(h(x) + h(y)),

and the h-scalar multiplication of x ∈ Rn and λ ∈ R as
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λ⊗ x = h−1(λh(x)).

2. Let ϕ be a real-valued continuous functions defined onR, with the inverse
function ϕ−1. Then ϕ-addition of two numbers, α ∈ R and β ∈ R, is
given by

α[+]β = ϕ−1(ϕ(α) + ϕ(β)),

and the ϕ-scalar multiplication of α ∈ R and λ ∈ R by

λ[·]α = ϕ−1(λϕ(α)).

3. The (h, ϕ)-inner product of vectors x, y ∈ Rn is defined as

(xT y)h,ϕ = ϕ−1(h(x)Th(y)).

We put, for xi ∈ Rn, i = 1, 2, . . . ,m,

m
⊕
i=1
xi = x1 ⊕ x2 ⊕ . . .⊕ xm

and for αi ∈ R, i = 1, 2, . . . ,m,

[
∑m
i=1]αi = α1[+]α2[+] . . . [+]αm

For x, y ∈ Rn and α, β ∈ R the operations of subtraction are

xΘy = x⊕ ((−1)⊗ y), α[−]β = α[+]((−1)[·]β).

Using Ben-Tal generalized algebraic operation, it is easy to obtain the
following relations:

m
⊕
i=1
xi = h−1

(∑m
i=1 h(xi))

)
[
∑m
i=1]αi = ϕ−1 (

∑m
i=1 ϕ(αi))

xΘy = h−1(h(x)− h(y))

α[−]β = ϕ−1(ϕ(α)− ϕ(β))

ϕ(λ[·]α) = λϕ(α)
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h(λ⊗ x) = λh(x)

Denote: f̂(t) = ϕ(f(h−1(t))). For simplicity, write f̂(t) = ϕfh−1(t).
Definition 2.1 [17] A real valued function f : Rn → R is said to be

(h, ϕ) - Lipschitz at x ∈ Rn if there exists to positive constants ε, k such that
|f(z)[−]f(y)|h,ϕ ≤ k[·] ‖ zΘy ‖(h,ϕ),∀z, y ∈ Bε,(h,ϕ)(x). f is said to be (h, ϕ)
- locally Lipschitz on Rn if f is (h, ϕ) - Lipschitz at every x ∈ Rn.

Let f be a Lipschitz and real-valued function defined on Rn. For all
x, v ∈ Rn, the (h, ϕ) - generalized directional derivative of f with respect to
direction v and the (h, ϕ) - generalized gradient of f at x, denoted by f∗(x, v)
and ∂∗f(x), respectively, are defined as follows [4].

f∗(x, v) = limy→x,t→0 sup
1
t [·](f(y ⊕ t⊗ v))[−]f(y)),

∂∗f∗(x) =
{
ξ∗ ∈ Rn; f∗(x, v) ≥ (ξ∗T v)(h,ϕ),∀v ∈ Rn

}
,

The relation between (h, ϕ)-generalized directional derivative and Clarke
directional derivative can be given by the following theorem.

Theorem 2.1 [4]. Let f be a real valued function, ϕ(t) be strictly increas-

ing and continuous on R. Then f∗(x, v) = ϕ−1(f̂◦(h(x), h(v))), where f◦ is
Clarke directional derivative.

Theorem 2.2 [4]. Let f be a real valued function, ϕ(t) be strictly increas-
ing and continuous on R. Then

∂∗(x) = h−1(∂f̂(h(x))) =
{
h−1(ξ); ξ ∈ ∂(f̂(t)|t=h(x))

}
.

Definition 2.2[1] Let f be a real-valued function defined on Rn. The

function f is said to be (h, ϕ)-differentiable at x, if f̂(t) is differentiable at
t = h(x). Denote ∇∗f(x) = h−1(∇f(t)|t=h(x)).

In addition, f is (h, ϕ)-differentiable on Rn, if is (h, ϕ)-differentiable in any
x ∈ Rn.

Remark 2.1[4] Every differentiable function at x is (h, ϕ)-differentiable
at x, where h(t) = t, t ∈ Rn and ϕ(α) = α, α ∈ R.
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We consider the following optimization problem:
(P )maxf(x)

s.t. gi(x) ≥ 0, i ∈ I
hj(x) = 0, j ∈ J

where, f : Rn → R, gi : Rn → R, i ∈ I, hi : Rn → R, j ∈ J are contin-
uously and (h, ϕ)-differentiable functions, and |I| = m, |J | = l(m, l ∈ Z+).If
there are not inequality (equality) constraints, we assume that m = 0(l = 0).

We define I(x̄) ≡ {i|gi(x̄) = 0, i ∈ I}.

Now we give the Mangasarian-Fromovitz constraint qualification (MF )h,ϕ
(as a generalization of the Mangasarian and Fromovitz constraint [6]) in asso-
ciation with (P) and with our operators:

(MF )h,ϕ: For x̄ ∈ Rn,∇∗hj(x̄), j ∈ J , are linearly independent, and there
exist d ∈ Rn s.t.

(∇∗gi(x̄), d)h,ϕ > 0, i ∈ I(x̄) and (∇∗hj(x̄), d)h,ϕ = 0, j ∈ J .

Remark: The linearly independent constraint qualification, which is usu-
ally assumed in practice, implies (MF )h,ϕ.

The following lemma is a generalization of the Corollar 2 to Theorem 2.4.5
from [2] :

Lemma 2.1For A ∈ Rn×m, B ∈ Rn×1, and c ∈ Rn, either

(a)∃y ≥ 0,∃z ∈ R1, c+Ay +Bz = 0
or

(b)∃x ∈ Rn, cTx > 0 and ATx ≥ 0, BTx = 0
but never both.

In the rest of the paper, we further assume h : Rn → Rn is a continuous
one-to-one and onto function. Similarly, suppose ϕ : R → R is a continuous
one-to-one strictly monotone and onto function.

2 Result

We now establish the main result,which includes the boundedness of Lagrange
multipliers under(MF )h,ϕ.
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Theorem 3.1.: If x̄ ∈ Rn is a local solution for (P ), and the constraint
qualification(MF )h,ϕ holds at x̄, then, there exist λ̄i ≥ 0, i ∈ I and there
exist µ̄j ∈ R, j ∈ J , such that

∇∗f(x̄)⊕ ⊕
i∈I
λ̄i ⊗∇∗gi(x̄)⊕ ⊕

j∈J
µ̄j ⊗∇∗hj(x̄) = 0, (1)

λ̄⊗ gi(x̄) = 0, λ̄i ≥ 0, i ∈ I,

and furthermore λ̄, µ̄ are bounded.

Proof : Let x̄ ∈ Rn, xk in the feasible region such that xkΘx̄ = tk⊗s⊕o(tk).
Without loss of generality, we suppose ϕ is strictly monotone increasing on
R. How gi is (h, ϕ)-differentiable in x̄, so ĝi(t) = ϕgih

−1(t) is differentiable in
t̄ = h(x̄) we get

ĝi(t̄+ tkh(s)) = ĝi(t̄) + tkh(s)T∇ĝi(t̄) + o(tk), where o(tk)→ 0,

when tk → 0
so, we obtain

ϕgih
−1(h(x̄) + tkh(s)) = ϕgih

−1(h(x̄)) + tkh(s)Th(∇∗gi(x̄)) + o(tk).

Therefore

ϕgi(x̄⊕ tk ⊗ s) = ϕgi(x̄) + tkϕ((∇∗gi(x̄), s)h,ϕ) + o(tk).

So

ϕgi(x̄⊕ tk ⊗ s)− ϕgi(x̄) = tkϕ((∇∗gI(x̄), s)h,ϕ) + o(tk).

By division with tk, we have

ϕgi(x̄⊕tk⊗s)−ϕgi(x̄)
tk

= ϕ((∇∗gi(x̄), s)h,ϕ) + o(tk)
tk

and together with monotony of ϕ we obtain

ϕgi(x
k)−ϕgi(x̄)
tk

= ϕ((∇∗gi(x̄), s)h,ϕ) + o(tk)
tk
≥ 0, when tk → 0, i ∈ I(x̄).

which show that s ∈ Rn satisfies (∇∗gi(x̄), s)h,ϕ ≥ 0, i ∈ I(x̄).

Similarly, we obtain

ϕhj(xk)−ϕhj(x̄)
tk

= ϕ((∇∗hj(x̄), s)h,ϕ) + o(tk)
tk
≥ 0, when tk → 0, j ∈ J .
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which show us that (∇∗hj(x̄), s)h,ϕ = 0, i ∈ J .

Then, for a local solution x̄, it follows that

(∇∗f(x̄), s)h,ϕ > 0 (2)

does not hold, since, if,

ϕf(xk)−ϕf(x̄)
tk

= ϕ((∇∗f(x̄), s)h,ϕ) + o(tk)
tk
≥ 0, as tk → 0 for xk → x̄

then the local optimality of f at x̄ is contradicted.
Therefore, using the fact that ϕ,is strictly monotone increasing, the follow-

ing system:

h(s)Th(∇∗f(x̄)) > 0

h(s)Th(∇∗gi(x̄)) ≥ 0 for i ∈ I(x̄)

h(s)Th(∇∗hj(x̄)) = 0 for j ∈ J

is inconsistent.
So, because h : Rn → Rn is a one-to-one and onto function, there does

not exist a z satisfying

zTh(∇∗f(x̄)) > 0

zTh(∇∗gi(x̄)) ≥ 0 for i ∈ I(x̄)

zTh(∇∗hj(x̄)) = 0 for j ∈ J

We take c = h(∇∗f(x̄))T , A = (h(∇∗gi(x̄)))Ti∈I(x̄), B = (h(∇∗hj(x̄)))Tj∈J

It follows from the above discussion that the system

cTX > 0, ATX ≥ 0, BTX = 0

is inconsistent.

By Lemma 2.1, there exist λ̄i ∈ R|I(x̄)|
+ , µ̄ ∈ R|J| such that

h(∇∗f(x̄)) +
∑
i∈I (̄x)

λ̄ih(∇∗gi(x̄)) +
∑
j∈J

µ̄jh(∇∗hj(x̄)) = 0

Applying h−1 , we obtain
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h−1(h(∇∗f(x̄)) +
∑
i∈I(x̄)

λ̄ih(∇∗gi(x̄)) +
∑
j∈J

µ̄jh(∇∗hj(x̄))) = h−1(0)

which leads to

∇∗f(x̄)⊕⊕i∈I(x̄)λ̄i ⊗∇∗gi(x̄)⊕⊕j∈J µ̄j ⊗∇∗hj(x̄) = 0, (3)

λ̄i ⊗ gi(x̄) = 0, λ̄ ≥ 0, i ∈ I(x̄)

or, equivalently,

∇∗f(x̄)⊕⊕i∈I λ̄i ⊗∇∗gi(x̄)⊕⊕j∈J µ̄j ⊗∇∗hj(x̄) = 0,

λ̄i ⊗ gi(x̄) = 0, λ̄i ≥ 0, i ∈ I

for λ̄i = 0, i ∈ I − I(x̄).

(MF )(h,ϕ) guarantees the existence of such s, s 6= 0, so then exists d ∈ Rn
from the implicit function theorem[6], if |I(x̄)|+ l ≥ 1; otherwise (2) does not
hold for s 6= 0, s ∈ Rn.

From (3) we obtain that exists an d ∈ Rn which satisfy (MF )h,ϕ and

(∇∗f(x̄)⊕⊕i∈I(x̄)λ̄i ⊗∇∗gi(x̄), d)h,ϕ = 0,

So,

(∇∗f(x̄), d)h,ϕ[+][
∑
i∈I(x̄)

]λ̄i[·](∇∗gi(x̄), d)h,ϕ = 0

So if, |I(x̄)| 6= 0 and if function ϕ it is only strictly monotone increasing
on R, we have:

− ϕ((∇∗f(x̄),d)h,ϕ)
|I(x̄)|·ϕ(min(∇∗gi(x̄),d)h,ϕ) ≥ λ̄i ≥ 0,

and if |I(x̄)| = 0, then λ̄ vanishes.

Therefore, (3) reduced to (a bounded vector) ⊕⊕j∈J µ̄j ⊗∇∗hj(x̄) = 0.

From calification constraints (MF )h,ϕ, we have that ∇∗hj(x̄), j ∈ J are
linearly independent, and so µ̄ is determined to a single bounded vector.
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3 Conclusions

In this paper, using the algebraic operations introduced by Ben-Tal, the Karush-
Kuhn-Tucker optimality conditions under the Mangasarian-Fromovitz con-
straint qualification were derived directly by applying a corollary of Farkass
lemma, without involving the Fritz John conditions, or without introducing
the tangent cones. The boundedness of Lagrange multipliers was also shown.
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